Convex Nonnegative Matrix Factorization with Rank-1 Update for Clustering
نویسنده
چکیده
In convex nonnegative matrix factorization, the feature vectors are modeled by convex combinations of observation vectors. In the paper, we propose to express the factorization model in terms of the sum of rank-1 matrices. Then the sparse factors can be easily estimated by applying the concept of the Hierarchical Alternating Least Squares (HALS) algorithm which is still regarded as one of the most effective algorithms for solving many nonnegative matrix factorization problems. The proposed algorithm has been applied to find partially overlapping clusters in various datasets, including textual documents. The experiments demonstrate the high performance of the proposed approach.
منابع مشابه
A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملFast Nonnegative Matrix Factorization with Rank-one ADMM
Nonnegative matrix factorization (NMF), which aims to approximate a data matrix with two nonnegative low rank matrix factors, is a popular dimensionality reduction and clustering technique. Due to the non-convex formulation and the nonnegativity constraints over the two low rank matrix factors (with rank r > 0), it is often difficult to solve NMF efficiently and accurately. Recently, the altern...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملAutomatic Rank Determination in Projective Nonnegative Matrix Factorization
Projective Nonnegative Matrix Factorization (PNMF) has demonstrated advantages in both sparse feature extraction and clustering. However, PNMF requires users to specify the column rank of the approximative projection matrix, the value of which is unknown beforehand. In this paper, we propose a method called ARDPNMF to automatically determine the column rank in PNMF. Our method is based on autom...
متن کاملRelationship Matrix Nonnegative Decomposition for Clustering
Nonnegative matrix factorization NMF is a popular tool for analyzing the latent structure of nonnegative data. For a positive pairwise similarity matrix, symmetric NMF SNMF and weighted NMF WNMF can be used to cluster the data. However, both of them are not very efficient for the ill-structured pairwise similarity matrix. In this paper, a novel model, called relationship matrix nonnegative deco...
متن کامل